

SEDE DE FÁBRICA

22 Yushin America, Inc.

20 Yushin Automation Limited

7 Guangzhou Yushin Precision Equipment 1 Yushin Corea Co.,Ltd.

SEDE DE FÁBRICA

11-260 Kogahonmachi, Fusjimi-ku, Kioto

SUBSIDIARIAS

- 1 Yushin Corea Co.,Ltd. (Seoul)
- 2 Daegu Oficina
- Taiwán 3 Yushin Precision Equipment (Taiwán) Co., Ltd. (Taipei)
 - 4 Taichung Oficina

China

- 5 Yushin Precision Equipment Trading (Shanghai) Co., Ltd.
- (6) Tianjin Oficina
- 7 Guangzhou Yushin Precision Equipment Co., Ltd. (Guangzhou)
- (8) Yushin Precision Equipment Trading (Shenzhen) Co., Ltd.

Indonesia

- 12) PT. Yushin Precision Equipment Indonesia
- Malasia 13 Yushin Precision Equipment Sdn. Bhd. (Kuala Lumpur) Tailandia
 - 14) Yushin Precision Equipment (Tailandia) Co., Ltd.
- India
 - (15) Yushin Precision Equipment (India) Pvt. Ltd. (Chennai) 20 Yushin Automation Limited (Birmingham)
- U.K U.S.A
- 22 Yushin America, Inc. (Rhode island)
- 23 Yushin America, Inc. Indiana Office (Indiana)
- 24) Yushin America, Inc. Ohio Office (Ohio)
- 25 Yushin America, Inc. North Carolina Office (North Carolina)
- 26 Yushin America, Inc. Texas Office (Texas)
- 27) Yushin America, Inc. California Office (California)

OFICINAS DE REPRESENTACIÓN

Filipinas

- 9 Filipinas Representative Office (Manila)
- Vietnam 10 Hanoi Representative Office
 - 11 Ho Chi Minh Representative Office

AGENTES DE VENTAS

Nueva Zelandia Australia

Italia

España

- 16 Tasman Machinery Limited
- 17 Tasman Machinery Pty Limited
- (18) MACAM S.r.I. (Torino)
- Países Bajos 19) Polymac-Robotics B.V. (Ede)
 - **21)** MECMAN INDUSTRIAL, S.L.
 - 28 En-Plas,Inc. (Toronto)

- Estos productos son robots industriales tal como se definen en las leyes de seguridad. Opere siempre con mucho cuidado.
 Para mejorar la claridad visual, estos robots pueden mostrarse sin las protecciones de seguridad. Nunca opere los robots sin los protectores de seguridad
- an su lugar.
 an su lugar.
 Antes de utilizar cualquier producto introducido en esta literatura, todos los operadores deberán leer y entender el manual de instrucciones y otros doc s relacionados para la operación del equipo adecuada y segura.

Oficina principal / 11-260 Kogahonmachi, Fusjimi-ku, Kioto,612-8492 Japón TEL +(81) 75-933-9555 FAX +(81) 75-944-4033

SC SERIES 70 / 150 / 250 / 350 / II350 / II600

CONSERVACIÓN DE ENERGÍA

Mejor economización de aire

Herramienta de economización de aire ECO VACUUM PAT.

Ahorro de energía al reducir el consumo de aire en las operaciones de succión durante

la extracción

ECO Vacuum es propiedad de Yushin, es un sistema de economización de aire comprimido. Mediante el control de la presión de aspiración se corta el suministro de aire mientras la sujección se mantiene, con lo cual el uso de aire se reduce en un 75%. Esta eficiencia se traduce en una reducción de las facturas de electricidad de compresores de aire y reduce los costes de mantenimiento.

*Por medidas en tests internos

BENEFICIOS

Ahorro anual por compresor

*Conversión del Yen , JPY 100=EURO

Como funciona el ECO Vacuum

Supervisa automáticamente la presión de succión de vacío durante el proceso de extracción para reducir el consumo de aire comprimido hasta el 75% El SC incorpora un ECO Circuito de Vacío de serie.

Los circuitos de vacío se cierran cuando la presión de vacío alcanza un nivel, de manera que el sistema mantiene la succión desde la recogida hasta que deposita la pieza. Sin esta característica, los robots consumen aire continuamente durante el intérvalo succión- extracción-depósito

Reduce costes de producción

Herramienta de conservación de energía

Modo ECO_{PAT.}

En el modo ECO, el robot automáticamente ralentiza su velocidad de desplazamiento transversal para adaptarse más eficientemente al comienzo del siguiente ciclo de la máquina de inyeción.

BENEFICIOS

Resultado

Reduce el consumo de electricidad

(un ahorro de hasta el 5%)

Resultado

Aumento de la longevidad

Prolonga la vida útil de las correas de distribución y los carriles de guía.

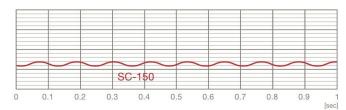
Herramienta de conservación de energía

ECO MONITOR PAT

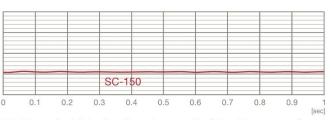
Muestra el consumo de electricidad y de aire del robot en tiempo real para ayudar a los operadores a tomar medidas de ahorro de energía.

Reduce costes de producción

CONTROL DE VIBRACIÓN


Reducción de los tiempos de asentamiento

Optimización del Diseño + Controles antivibración


La optimización del diseño utilizado para la serie SC tiene en cuenta factores tales como la oscilación natural y características de amortiguación para reducir el tiempo de asentamiento *. Utilizado junto con otra tecnología de amortiguación vibraciones, se mejora notablemente el control de la vibración en los modelos SC ".

*Tiempo de estabilización

El Tiempo de estabillización se define como el intervalo de tiempo requerido para reducir las vibraciones dentro de un valor establecido. Acortar el tiempo de estabilización significa que las extremidades de la muñeca utilizada para transportar las piezas inyectadas cesan los aleteos mucho antes, con lo cual se reducen los tiempos de espera.

SC-150 amplitud de la vibración en la extracción (dirección dedesmoldeo)

SC-150 amplitud de la vibración en la extracción (dirección transversal)

El Proceso de Optimización de Diseño PASO.1 PASO.2 PASO.3 PASO.4 establece el área de Optimización Optimización Versión final Resultado 1 Resultado 2 del Marco Optimización Análisis Estructural \rightarrow Aplica el análisis estructura (enazul arriba) e introduce azules son bajos .Recorte de optimizaciones,la de la sección transversal del los Puntos Fijos y los Valores área de optimización para topología (forma) del marco optimizado para decidir la forma final detallada para de Carga. adaptarse. material cambia.

BENEFICIOS

Tiempos más cortos (=tiempo de extracción más rápido)

En gran medida, la reducción de tiempos de estabilización se pueden acortar, para permitir tiempos de extracción más rápidos.

Extracción suave y estable

Con una superior amotiguación de la vibración durante el movimiento y la parada, el robot SC extrae y manipula las piezas suavemente. Permite manejar incluso piezas de precisión micro-inyectadas. La serie SC ayuda a aumentar la eficiencia de su producción.

Mejora la productividad

ALTA VELOCIDAD

Optimizado, peso mas ligero

Peso ligero a través de la tecnología de optimización

El departamento de I + D YUSHIN empleó la tecnología de optimización de diseño para mejorar la forma y la estructura de los componentes del SC para obtener un peso menor. El esfuerzo dió como resultado un recorte de 16Kg en las partes móviles, un 10,1% menos que en la serie previa SA.

La serie SC también alcanza velocidades más rápidas, es un 10,4% más rápido que la serie SA sin aumentar el tamaño del motor. Pero la serie SC no fue simplemente aligerada de peso sino que fue dotada de menor peso a través de un diseño óptimo manteniendo una alta rigidez.

BENEFICIOS

Tiempos de extracción mas rápidos

Tiempos más cortos de extracción se traducen directamente en la mejora de la producción...Incorporando el concepto de acortar tiempos para aumentar la productividad, los robots de la serie SC ayudan a mejorar la eficiencia de las operaciones de inyección.

Mejora la productividad

Investigación conjunta con la Universidad de Kyoto

La investigación sobre la optimización del diseño se realizó en cooperación con la Universidad de Kyoto. Tras el éxito alcanzado en la optimización de las manos Yushin empleó esta tecnología en las series HSA, TXA, YC y ahora en la serie SC.

JSPE Galardón para jóvenes ingenieros

En 2009 La Sociedad Japonesa de Ingeniería de Precisión galardonó a los Ingenieros de Yushin por su trabajo en el Proyecto "Optimización del diseño de las manos para robots de extracción de máquinas de inyección.

Controlador E-TOUCH

Iniciativa a través de la enseñanza PAT.

Permite a los usuarios realizar fácilmente varios tipos de cambios en los programas del robot sobre el terreno lo que ayuda a ahorrar tiempo y costos de programación.

Tarjeta de memoria SD

Puede hacer una copia de seguridad en la tarjeta de memoria SD y transferirse fácilmente a otro robot.

Nueva pantalla táctil TFT LCD (30.000 colores) para una visualización más clara.

OTRO EQUIPO ESTÁNDAR

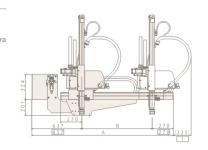
7.5in pantalla táctil a todo color (TFT LCD)	Movimiento de alto ciclo
Corner Shock-protectores	Espera en eje Transversal
Memoria para moldes (para approx.300 moldes)	Espera para Orden de Descenso
Circuito de Rechazo	Monitor de estado de Producción
Movimiento de inyectadas iniciales de descarga	Pantalla multilingüe (japonés+un estándar en otros idiomas)
Movimiento de muestreo	ECO Mode
Movimiento de desmoldo en negativo	ECO Monitor

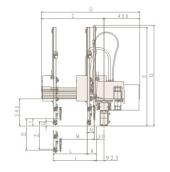
SC/SCII

Especificaciones estándar

fuente de	método de	método de	presión	Giro de muñeca
alimentación	guiado	control	atmosférica	
Monofásica AC200V/220V (50/60Hz)	Digital servo motor 3/5-axis	Micro control por ordenador	0.49MPa 0.7MPa Presión máxima del aire	90deg

SC-70


Especificaciones


modelo	Consumo máximo	Carrera transversal	desm	rera oldeo m)	vert	rera ical m)	Con- sumo	Carga máxima	Fuerza de cierre
modelo	de energía	(mm)	brazo princi- pal	brazo secun- dario	brazo princi- pal	brazo secun- dario	de aire (Nl/ciclo)	(kg)	(tn)
SC-70S	Tipo S 1.0kVA AC200V 5.0A	900 [1200]	470	_	[550] 650	_	1.7 (ECO	3	30~100
SC-70D	D tipo 1.3kVA AC200V 6.5A	[1600]	430	430	[750]	[600] 700 [800]	Vacuum especifi- cación)	3	30 - 100

Tipo: Equipado con brazo principal solamente D Tipo: Equipado con brazo principal y sub brazo sub [] = carrera transversal extendida
Máxima carga útil incluye el final de brazo-herramienta.
Mayores cargas posibles, dependiendo de la configuración de extracción y la velocidad.

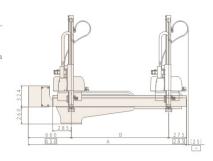
Dimensiones (mm)

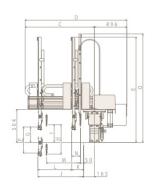
- () = carrera transversal extendida
- [] = S Tipo Dimensiones
- = para modelos de extracción trasera

- 1	modelo	Α	В	С	D	E	F	G	Н	1	J	K	L	M	N	0
	SC-70	1807 (2107) (2507)	900 (1200) (1600)	795	1251	1257	650	55	700	92	550	120 [80]	430 [470]	430	90	1281

SC-150/250

Especificaciones


modelo Consumo máximo de energía		Carrera transversal	desm	rera oldeo m)	Carrera vertical (mm)		Con- sumo	Carga máxima	Fuerza de cierre
	(mm)	brazo princi- pal	brazo secun- dario	brazo princi- pal	brazo secun- dario	de aire (Nl/ciclo)	(kg)	(tn)	
SC-150S	Tipo S 1.5kVA	1500	578	_	800	_	2.3 (ECO	- 5	100~250
SC-150D	AC200V 7.5A		518	518	[900]	850 [950]	Vacuum especifi- cación)		
SC-250S	D tipo 1.9kVA AC200V 9.5A	[1900]	728	_	900	_	2.7 (ECO		250~350
SC-250D			668	668	[1000]	950 [1050]	Vacuum especifi- cación)		230 9350


Tipo: Equipado con brazo principal solamente DTipo: Equipado con brazo principal y sub brazo sub
[] = carrera transversal extendida
Máxima carga útil incluye el final de brazo-herramienta.

Mayores cargas posibles, dependiendo de la configuración de extracción y la velocidad.

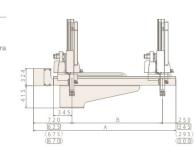
Dimensiones (mm)

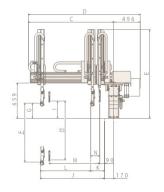
- () = carrera transversal extendida
- [] = S Tipo Dimensiones
- = para modelos de extracción trasera

modelo	Α	В	С	D	E	F	G	Н	1	J	K	L	M	N	0
SC-150	2435	1500	1065	1561	1620	800	236	850	271	700	182	518 [578]	518	132	1670
SC-250	(2835)	(1900)	1220	1716	1724	900	230	950	2/1	850	[122]	668 [728]	668	132	1774

SC-350/II350/II600

Especificaciones


modele	C-350S Tipo S 1.86kVA AC200V 9.3A [19]	Carrera transversal	desm	rera oldeo m)	vert	rera ical m)	Con- sumo	Carga máxima	Fuerza de cierre	
modelo		(mm)	brazo princi- pal	brazo secun- dario	brazo princi- pal	brazo secun- dario	de aire (Nl/ciclo)	(kg)	(tn)	
SC-350S			1100	_	1100	-	4.2 (ECO Vacuum	12	350~450	
SC-350D		1700 [1900]	940	940		1100	especifi- cación) 4.0 (ECO			
SCII-350S		[2200]	1100	_		_				
SCⅡ-350D	D tipo 2.46kVA		940	940		1100	Vacuum especifi- cación)			
SCII-600S	AC200V 12.3A	1700 [1900]	1100	_	1300	-	4.4 (ECO		450~650	
SCII-600D		[2500]	940	940	1300	1300	Vacuum especifi- cación)		450~650	


Tipo: Equipado con brazo principal solamente D Tipo: Equipado con brazo principal y sub brazo sub
[] = carrera transversal extendida
Máxima carga útil incluye el final de brazo-herramienta.

Mayores cargas posibles, dependiendo de la configuración de extracción y la velocidad.

Dimensiones (mm)

- () = carrera transversal extendida

modelo	Α	В	С	D	E	F	G	Н	1	J	K	L	M	N
SC-350	2670 (2870)	1700	1595		2106	- 1100	284	1100	324	1200	260 [100]	940 [1100]	940	170
SCII-350	(3170)	(1900) (2200)		2091	1556									
SCII-600	2670 (2870) (3470)	1700 (1900) (2500)			1656	1300		1300						